6 research outputs found

    Absorption of solar radiation by heterogeneous atmospheres: a new approach to Monte Carlo modeling

    Get PDF
    February, 1998.Bibliography: pages [137]-141.Sponsored by Dept. of Energy DE-FG-03-94ER61748.Sponsored by Dept. of Energy DE-FG-03-95ER61985.Sponsored by Dept. of Energy DE-FG-03-97ER62357

    Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data

    Get PDF
    The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO₂) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) X_(CO₂) retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O₂ A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO₂ and H₂O column abundances using observations taken at 1.61 µm (weak CO₂ band) and 2.06 µm (strong CO₂ band), while neglecting atmospheric scattering. The CO₂ and H₂O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of  ≃ 20–25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be  ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April–May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1

    GHOST: A Satellite Mission Concept for Persistent Monitoring of Stratospheric Gravity Waves Induced by Severe Storms

    No full text
    The prediction of tropical cyclone rapid intensification is one of the most pressing unsolved problems in hurricane forecasting. The signatures of gravity waves launched by strong convective updrafts are often clearly seen in airglow and carbon dioxide thermal emission spectra under favorable atmospheric conditions. By continuously monitoring the Atlantic hurricane belt from the main development region to the vulnerable sections of the continental U.S. at high cadence it will be possible to investigate the utility of storm-induced gravity wave observations for the diagnosis of impending storm intensification. Such a capability would also enable significant improvements in our ability to characterize the 3D, transient behavior of upper atmospheric gravity waves, and point the way to future observing strategies that could mitigate the risk to human life due to severe storms. This paper describes a new mission concept involving a mid-infrared imager hosted aboard a geostationary satellite positioned at approximately 80°W longitude. The sensor’s 3-km pixel size ensures that gravity wave horizontal structure is adequately resolved, while a 30-s refresh rate enables improved definition of the dynamic intensification process. In this way the transient development of gravity wave perturbations caused by both convective and cyclonic storms may be discerned in near realtime
    corecore